Jordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation

نویسنده

  • Stefano Serra Capizzano
چکیده

We consider the web hyperlink matrix used by Google for computing the PageRank whose form is given by A(c) = [cP + (1 − c)E]T , where P is a row stochastic matrix, E is a row stochastic rank one matrix, and c ∈ [0, 1]. We determine the analytic expression of the Jordan form of A(c) and, in particular, a rational formula for the PageRank in terms of c. The use of extrapolation procedures is very promising for the efficient computation of the PageRank when c is close or equal to 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PageRank Computation, with Special Attention to Dangling Nodes

Abstract. We present a simple algorithm for computing the PageRank (stationary distribution) of the stochastic Google matrix G. The algorithm lumps all dangling nodes into a single node. We express lumping as a similarity transformation of G, and show that the PageRank of the nondangling nodes can be computed separately from that of the dangling nodes. The algorithm applies the power method onl...

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

متن کامل

Google Pageranking Problem: The Model and the Analysis

Let A be a given n-by-n complex matrix with eigenvalues λ, λ2, . . . , λn. Suppose there are nonzero vectors x, y ∈ Cn such that Ax = λx, y∗A = λy∗, and y∗x = 1. Let v ∈ Cn be such that v∗x = 1, let c ∈ C, and assume that λ 6= cλj for each j = 2, . . . , n. Define A(c) := cA+(1− c)λxv∗. The eigenvalues of A(c) are λ, cλ2, . . . , cλn. Every left eigenvector of A(c) corresponding to λ is a scala...

متن کامل

The Eigenvalue Shift Technique and Its Eigenstructure

The eigenvalue shift technique is the most well-known and fundamental tool for matrix computations. Applications include the search of eigeninformation, the acceleration of numerical algorithms, the study of Google’s PageRank. The shift strategy arises from the concept investigated by Brauer [1] for changing the value of an eigenvalue of a matrix to the desired one, while keeping the remaining ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005