Jordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation
نویسنده
چکیده
We consider the web hyperlink matrix used by Google for computing the PageRank whose form is given by A(c) = [cP + (1 − c)E]T , where P is a row stochastic matrix, E is a row stochastic rank one matrix, and c ∈ [0, 1]. We determine the analytic expression of the Jordan form of A(c) and, in particular, a rational formula for the PageRank in terms of c. The use of extrapolation procedures is very promising for the efficient computation of the PageRank when c is close or equal to 1.
منابع مشابه
PageRank Computation, with Special Attention to Dangling Nodes
Abstract. We present a simple algorithm for computing the PageRank (stationary distribution) of the stochastic Google matrix G. The algorithm lumps all dangling nodes into a single node. We express lumping as a similarity transformation of G, and show that the PageRank of the nondangling nodes can be computed separately from that of the dangling nodes. The algorithm applies the power method onl...
متن کاملInfinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملGoogle Pageranking Problem: The Model and the Analysis
Let A be a given n-by-n complex matrix with eigenvalues λ, λ2, . . . , λn. Suppose there are nonzero vectors x, y ∈ Cn such that Ax = λx, y∗A = λy∗, and y∗x = 1. Let v ∈ Cn be such that v∗x = 1, let c ∈ C, and assume that λ 6= cλj for each j = 2, . . . , n. Define A(c) := cA+(1− c)λxv∗. The eigenvalues of A(c) are λ, cλ2, . . . , cλn. Every left eigenvector of A(c) corresponding to λ is a scala...
متن کاملThe Eigenvalue Shift Technique and Its Eigenstructure
The eigenvalue shift technique is the most well-known and fundamental tool for matrix computations. Applications include the search of eigeninformation, the acceleration of numerical algorithms, the study of Google’s PageRank. The shift strategy arises from the concept investigated by Brauer [1] for changing the value of an eigenvalue of a matrix to the desired one, while keeping the remaining ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 27 شماره
صفحات -
تاریخ انتشار 2005